Scientists are exploring taking crops out of the field and growing them in warehouses to develop new varieties capable of feeding 10 billion people by 2050. A review in the journal Nature Biotechnology has outlined efforts to harness technology like speed breeding, genome editing, growing crops indoors, and manipulating the temperature and atmosphere to fast-track new varieties of major crops like wheat and corn, reports The Australian Broadcasting Corporation, Australia’s national broadcaster.
Lead author Lee Hickey, a senior research fellow at the University of Queensland, said a suite of new technologies will increasingly be needed to feed the world as resources dwindle. “Plant breeders want to deal with thousands of plants, so we need to find a way to really scale up these technologies and reduce the costs,” Dr Hickey said. “Some of these crops, we’re growing them at a rate of 1,000 plants per square metre and setting up these speed breeding facilities indoors. We’re actually creating warehouses.”
By taking crops out of the field and growing them in controlled conditions, variables like soil, water, light, and even the carbon dioxide levels in the atmosphere can be controlled. The technique builds on a speed breeding protocol developed by Dr Hickey that allows plant breeders to grow up to six generations of crops in a year instead of just two.
The technology has already reduced time it takes to select traits like disease resistance, drought tolerance and nutrition in critical food crops like wheat, barley, chickpea, millet, sorghum and quinoa. “But it’s still just one tool in the shed for a plant breeder,” Dr Hickey said.”What we propose is really that we need to bring all these technologies together and then a real step-change is possible in terms of making these crops more resilient in the face of climate change.” The authors hope that by speeding up the generation time for a crop like wheat, genetic improvements can be delivered to farmers quicker, producing more food with fewer resources.
While his work started in wheat, Dr Hickey said it was also important to adapt the technology to less-common crops often used in developing countries.”As of next year we’ll be building facilities in places like India, Mali, Zimbabwe,” he said. “This will help fast-track breeding for crops that haven’t had much investment like sorghum, millets and peanuts.”These crops are so critical to nutrition and global food security in those regions.”
While Dr Hickey is keen to see more investment in a variety of crops, wheat was still one of the most important food sources providing 20 per cent of the world’s daily calorie intake. But last year, wheat yields were down in Australia and Europe, which Kai Voss-Fels from the Queensland Alliance for Agriculture and Food Innovation said reaffirmed the need to quickly find wheat types which are robust and resilient. Dr Voss-Fels was working with international plant scientists to investigate the root structure of drought–tolerant wheat varieties. He said roots are important as they are the interface for water and nutrient intake. “Roots are complicated because the plant can only produce so much carbohydrates,” he said. “It’s always about resource allocation and how much energy a plant should put into growing roots or how much energy should it put into grain filling.” ABC